Prof. Fazhi Song | Control Systems & Optimization | Research Excellence Award

Prof. Fazhi Song | Control Systems & Optimization | Research Excellence Award

Professor | Harbin Institute of Technology | China

Dr. Fazhi Song, Professor in the School of Instrumentation Science and Engineering at Harbin Institute of Technology, is a leading specialist in control science and precision motion systems whose work advances high-end manufacturing and inspection technologies. With a Ph.D. in Control Science and Engineering and research expertise spanning motion generation, performance control, learning control, and system accuracy retentivity, he has built a distinguished academic and professional record through roles as researcher, lecturer, associate professor, and project leader on numerous advanced engineering projects. He has authored more than forty peer-reviewed publications, contributed a research monograph, and secured an extensive portfolio of patents and software copyrights, reflecting strong innovation and impact in precision motion control. His scholarly influence is further demonstrated by 432 citations across 367 documents, 45 indexed publications, and an h-index of 9. Dr. Song has been recognized with major honors, including high-level national and provincial awards for technological invention, innovation, and academic contribution, and he maintains active professional service as guest editor, editorial board member, conference session chair, peer reviewer for leading journals, and expert evaluator for national research programs. His contributions exhibit a blend of scientific rigor, technological advancement, and leadership, positioning him as an exemplary candidate for award recognition.

Profiles: Scopus | ORCID

Featured Publications

Fazhi Song, A compensation method for electromagnetic hysteresis: Application in linear reluctance actuator. J. Magn. Magn. Mater., 2025.*

Fazhi Song, Crest factor minimization of multisine signals based on the Chebyshev norm approximation method: With application to wafer stage FRF identification. Results Eng., 2025.*

Fazhi Song, Identification for precision mechatronics: An auxiliary model-based hierarchical refined instrumental variable algorithm. Int. J. Robust Nonlinear Control, 2025.*

Fazhi Song, Beyond performance of learning control subject to uncertainties and noise: A frequency-domain approach applied to wafer stages. IEEE/CAA J. Autom. Sinica, 2025, 5 citations.*

Assoc. Prof. Dr. Guanlong Jia | Electric Engineering | Research Excellence Award

Assoc. Prof. Dr. Guanlong Jia | Electric Engineering | Research Excellence Award

Associate Professor | Hebei University of Technology | China

Guanlong Jia, Lecturer at Hebei University of Technology and a Member of IEEE, is a researcher specializing in high-power electronics with expertise in circuit breakers, multilevel converters, control algorithms, and pulse-width modulation techniques. He holds a Ph.D. in electrical engineering from Zhejiang University, where he focused on advanced power electronic systems and their reliability. In his professional capacity, he contributes to teaching and research in power conversion technologies, participating in institutional and collaborative projects that enhance innovation in electrical engineering. His research centers on the design, analysis, and optimization of high-power electronic devices, and his contributions are reflected in his scholarly publications and technical advancements in power electronics. He is recognized for his academic engagement and his role in supporting the wider research community through professional membership and ongoing contributions to the field. At the end of his academic profile: 295 citations, 42 documents, and an h-index of 7.

Profile: Scopus

Featured Publications

Jia, Guanlong*, Transient stability enhancement method for virtual synchronous generators using power-angle deviation with a modified reactive-power control loop. Electronics (Switzerland), Accepted.

Jia, Guanlong*, Multi-objective optimization design of fast vacuum switch operating mechanisms for hydrogen-storage power systems. AIP Advances, Accepted.

Jia, Guanlong, Dynamics simulation and fault-characteristic analysis of permanent-magnet repulsion mechanisms for vacuum circuit breakers integrating advanced high-power switching technologies. AIP Advances, Accepted.