Ning Zhang | Signal & Image Processing | Research Excellence Award

Dr. Ning Zhang | Signal & Image Processing | Research Excellence Award

Postdoctor | Beijing institute of technology | China

Ning Zhang is a researcher in deep learning and remote sensing at the Beijing Institute of Technology, with expertise in computer vision, real-time processing, and onboard intelligent systems. He holds bachelor’s, master’s, and doctoral degrees in electronic information and information and communication engineering, with specialized training in lightweight neural networks and FPGA-based algorithm–hardware co-design. His professional experience includes leading and contributing to nationally funded and institutional projects focused on airborne and satellite AI deployment, where he has played key roles in algorithm development, system architecture design, and technical leadership. His research centers on remote sensing scene classification, object detection, model compression, and energy-efficient neural network accelerators, resulting in high-impact publications in leading IEEE journals, multiple authorized and accepted patents, and a citation record of 337 citations with an h-index of 9 and an i10-index of 8. He has received numerous prestigious scholarships, graduate honors, national-level competition awards, and maintains active engagement in academic and professional communities.

Citation Metrics (Google Scholar)

337
35
30
25
20
15
10
0

Citations

337

i10-index

8

h-index

9

Citations

i10-index

h-index

View ORCID Profile View Google Scholar

Featured Publications


UniGeoSeg: Towards Unified Open-World Segmentation for Geospatial Scenes

S. Ni, D. Wang, H. Chen, H. Guo, N. Zhang, J. Zhang

arXiv Preprint · Open-World Geospatial Segmentation


S2Net: Spatial-aligned and Semantic-discriminative Network for Remote Sensing Object Detection

J. Yao, H. Chen, Y. Xie, N. Zhang, M. Yang, L. Chen

IEEE Transactions on Geoscience and Remote Sensing · Top-Tier Journal


High-throughput Energy-efficient Accelerator with Collaborative-Trainable Sparse-Quantization Method for On-Board Remote Sensing Processing

T. Wang, H. Chen, N. Zhang, S. Ni, X. Zhang, L. Chen, W. Li

IEEE Transactions on Geoscience and Remote Sensing · Energy-Efficient AI Hardware


High-Throughput and Energy-Efficient FPGA-Based Accelerator for All Adder Neural Networks

N. Zhang, S. Ni, L. Chen, T. Wang, H. Chen

IEEE Internet of Things Journal · FPGA Acceleration


Q-A2NN: Quantized All-Adder Neural Networks for Onboard Remote Sensing Scene Classification

N. Zhang, H. Chen, L. Chen, J. Wang, G. Wang, W. Liu

Remote Sensing · Lightweight Neural Networks

Yixian Dong | Optoelectronic Devices | Research Excellence Award

Assoc. Prof. Dr. Yixian Dong | Optoelectronic Devices | Research Excellence Award

Associate Professor | Southwest Jiaotong University | China

Yixian Dong is an Associate Professor in the School of Information Science and Technology at Southwest Jiaotong University, China, with expertise in optical communications, integrated photonics, and photonic neural networks. He earned a PhD in Electronic Engineering specializing in advanced optical networking, a master’s degree in Optical Engineering, and a bachelor’s degree in Optoelectronic Information Engineering. His professional experience includes academic appointments, leadership of nationally and provincially funded research projects, and participation in large-scale collaborative programs and industry-linked research initiatives. His research focuses on optical integration, photonic reservoir computing, digital signal processing, and converged optical–wireless networks, resulting in 41 peer-reviewed publications with 325 citations and an h-index of 10. He has received multiple competitive talent and fellowship awards, actively serves as a reviewer and conference committee member for leading journals and international conferences, and maintains strong professional memberships and academic service credentials.

Citation Metrics (Scopus)

325
200
100
0

Citations

325

Documents

41

h-index

10

Citations

h-index

View Scopus Profile View ORCID Profile

Featured Publications

Sina Saadati | Signal & Image Processing | Research Excellence Award

Mr. Sina Saadati | Signal & Image Processing | Research Excellence Award

Computer Scientist | Amirkabir University of Technology | Iran

Sina Saadati is an emerging researcher and academic affiliated with a higher education and research institution, with expertise spanning interdisciplinary scientific and engineering research. He holds advanced academic degrees with specialization aligned to his research domain, supported by rigorous scholarly training that underpins his analytical and methodological contributions. His professional experience includes active involvement in research projects, collaborative investigations, and academic responsibilities that demonstrate leadership, independence, and commitment to knowledge advancement. His research focuses on targeted thematic areas within his field, with peer-reviewed scholarly publications contributing to the academic literature and supporting evidence-based innovation. His work has achieved measurable academic impact, reflected in 21 citations, an h-index of 3, and an i10-index of 0, indicating growing recognition within the research community. In addition to his research output, he has engaged with the scholarly ecosystem through professional memberships, academic service, and adherence to recognized research standards, positioning him as a dedicated and promising contributor suitable for award recognition.

Citation Metrics (Google Scholar)

25

20

15

10

5

0

Citations
21

Document
10

h index
3

Citations

Document

h-index

View  Google Scholar View  ORCID Profile

Featured Publications

Revolutionizing Endometriosis Treatment: Automated Surgical Operation through Artificial Intelligence and Robotic Vision

S. Saadati, M. Amirmazlaghani – Journal of Robotic Surgery, Vol. 18(1), p. 383, 2024

A Natural Way of Solving a Convex Hull Problem

S. Saadati, M. Razzazi – Proceedings of the National Academy of Sciences, India Section A, 2025

Cloud and IoT Based Smart Agent-Driven Simulation of Human Gait for Detecting Muscle Disorders

S. Saadati, A. Sepahvand, M. Razzazi – Heliyon, Vol. 11(2), 2025

Nahid: AI-Based Algorithm for Operating Fully-Automatic Surgery

S. Saadati – arXiv Preprint, arXiv:2401.08584

Assoc. Prof. Dr. Krzysztof Stepien | Signal & Image Processing | Best Researcher Award

Assoc. Prof. Dr. Krzysztof Stepien | Signal & Image Processing | Best Researcher Award

Head of Department of Metrology and Modern Manufacturing | Kielce University of Technology | Poland

Assoc. Prof. Krzysztof Stępień is a distinguished researcher and academic leader at the Department of Metrology and Modern Manufacturing, Kielce University of Technology, specializing in precision engineering, geometrical metrology, and surface texture analysis. He earned his Master of Science and Doctor of Science degrees in Mechatronics and Mechanical Engineering from Kielce University of Technology, where his doctoral research focused on cylindricity measurement errors using the V-block method. He later obtained his habilitation from the Warsaw University of Technology for pioneering work on new methods for measuring and evaluating form deviations of rotating elements. Throughout his academic career, he has held multiple leadership roles, including Head of the Department of Metrology and Modern Manufacturing, Head of the Institute of Technological Measuring Systems, and Head of the Laboratory of Computer-Aided Measurements of Geometrical Quantities, contributing significantly to advancing metrological research and education. His research focuses on form and surface metrology, signal processing in measurement systems, and adaptive measurement methods, with publications in top journals such as Precision Engineering, Measurement Science and Technology, and the International Journal of Advanced Manufacturing Technology. Prof. Stępień’s contributions have been widely recognized through professional honors, research collaborations, and editorial and scientific committee memberships, reflecting his commitment to innovation and excellence in modern manufacturing metrology.

Profile: ORCID

Featured Publications

Stępień, K.*, Algorithm for sensor nonlinearity compensation in measurements of geometric deviations of rotating elements with variable diameter. Precision Engineering, Accepted.

Janecki, D., Stępień, K.*, & Adamczak, S., Adaptive cylindricity measurements with the use of circumferential section strategy. Int. J. Adv. Manuf. Technol., 2024, 132, 585–600.

Stępień, K., In situ measurement of cylindricity—Problems and solutions. Precision Engineering, 2014, 38(3), 697–701.

Janecki, D., Stępień, K., & Adamczak, S., Sphericity measurements by the radial method: I. Mathematical fundamentals. Meas. Sci. Technol., 2016, 27(1), 015005.