Ning Zhang | Signal & Image Processing | Research Excellence Award

Dr. Ning Zhang | Signal & Image Processing | Research Excellence Award

Postdoctor | Beijing institute of technology | China

Ning Zhang is a researcher in deep learning and remote sensing at the Beijing Institute of Technology, with expertise in computer vision, real-time processing, and onboard intelligent systems. He holds bachelor’s, master’s, and doctoral degrees in electronic information and information and communication engineering, with specialized training in lightweight neural networks and FPGA-based algorithm–hardware co-design. His professional experience includes leading and contributing to nationally funded and institutional projects focused on airborne and satellite AI deployment, where he has played key roles in algorithm development, system architecture design, and technical leadership. His research centers on remote sensing scene classification, object detection, model compression, and energy-efficient neural network accelerators, resulting in high-impact publications in leading IEEE journals, multiple authorized and accepted patents, and a citation record of 337 citations with an h-index of 9 and an i10-index of 8. He has received numerous prestigious scholarships, graduate honors, national-level competition awards, and maintains active engagement in academic and professional communities.

Citation Metrics (Google Scholar)

337
35
30
25
20
15
10
0

Citations

337

i10-index

8

h-index

9

Citations

i10-index

h-index

View ORCID Profile View Google Scholar

Featured Publications


UniGeoSeg: Towards Unified Open-World Segmentation for Geospatial Scenes

S. Ni, D. Wang, H. Chen, H. Guo, N. Zhang, J. Zhang

arXiv Preprint · Open-World Geospatial Segmentation


S2Net: Spatial-aligned and Semantic-discriminative Network for Remote Sensing Object Detection

J. Yao, H. Chen, Y. Xie, N. Zhang, M. Yang, L. Chen

IEEE Transactions on Geoscience and Remote Sensing · Top-Tier Journal


High-throughput Energy-efficient Accelerator with Collaborative-Trainable Sparse-Quantization Method for On-Board Remote Sensing Processing

T. Wang, H. Chen, N. Zhang, S. Ni, X. Zhang, L. Chen, W. Li

IEEE Transactions on Geoscience and Remote Sensing · Energy-Efficient AI Hardware


High-Throughput and Energy-Efficient FPGA-Based Accelerator for All Adder Neural Networks

N. Zhang, S. Ni, L. Chen, T. Wang, H. Chen

IEEE Internet of Things Journal · FPGA Acceleration


Q-A2NN: Quantized All-Adder Neural Networks for Onboard Remote Sensing Scene Classification

N. Zhang, H. Chen, L. Chen, J. Wang, G. Wang, W. Liu

Remote Sensing · Lightweight Neural Networks

Lei Guan | Machine Learning | Research Excellence Award

Mr. Lei Guan | Machine Learning | Research Excellence Award

Director | China Academy of Safety Science and Technology | China

Lei Guan is a Director and Professor at the Risk Monitoring and Early Warning Center, China Academy of Safety Science and Technology, with expertise in risk monitoring, early warning systems, artificial intelligence, and industrial safety engineering. He holds a Bachelor’s degree in Materials Science and Master’s and Doctoral degrees in Mechanical Engineering with specialization in precision instruments and safety-related systems. He has led major national and ministerial research programs, directed key laboratories and professional committees, supervised graduate researchers, and provided technical leadership for large-scale industrial and governmental safety initiatives. His research focuses on intelligent work safety systems, industrial internet applications, digital twins, data-driven risk modeling, and emergency management, with sustained contributions through peer-reviewed publications, patents, and standards development. His scholarly impact is reflected in 18 citations, an h-index of 3, and 13 published articles.

Citation Metrics (Google Scholar)

18
15
10
5
0

Citations

18

Documents

13

h-index

3

Citations

Documents

h-index

View  Google Scholar  View ResearchGate View ORCID Profile

Featured Publications

Numerical simulation of the double pits stress concentration in a curved casing inner surface
W. Yan, L. Guan, Y. Xu, J.G. Deng – Advances in Mechanical Engineering, 9(1) (3 citations)

Safety monitoring and management system for fluid catalytic cracking (FCC) process
L. Fang, Z. Wu, L. Wei, R. Kang, L. Guan – International Conference on Information and Automation (3 citations)

Study on SVM-based Flame Recognition and Fire Warning for Cotton and Linen Warehouses
X. Zhao, S. Hao, L. Guan, Y. Wang, Q. Zhao, D. Lv – IEEE Conference on Advances in Electrical Engineering (2 citations)

Industrial Internet of Things (IIoT) Identity Resolution Techniques: A Review
C. Dai, H. Li, L. Guan, M. Chi – IEEE BigDataSecurity (1 citation)

Qiaoning Yang | Signal & Image Processing | Best Researcher Award

Assoc. Prof. Dr. Qiaoning Yang | Signal & Image Processing | Best Researcher Award

Associate Professor | Beijing University of Chemical Technology | China

Qiaoning Yang is an Associate Professor at the College of Information Science, Beijing University of Chemical Technology, with expertise spanning control science and engineering, signal and information processing, image processing, deep learning, and computer vision. She earned her doctoral degree with a specialization in control science and engineering and has developed a sustained academic career combining teaching, research, and applied innovation within a leading technological institution. Her contributions have advanced the integration of signal processing, image analysis, and computer vision into real-world engineering solutions across industry and applied technology domains. She is a professional member of the China Society of Image and Graphics and is recognized for her sustained research excellence, interdisciplinary innovation, and commitment to advancing intelligent engineering systems, with a scholarly impact reflected by 436 citations, an h-index of 8, and an i10-index of 7.

Citation Metrics (Google Scholar)

436
300
200
100
0
Citations

436

i10-index

7

h-index

8

Citations

i10-index

h-index

View  Google Scholar View Scopus Profile

Featured Publications

Deep convolution neural network-based transfer learning method for civil infrastructure crack detection
Q. Yang, W. Shi, J. Chen, W. Lin – Automation in Construction (221 citations)
Human posture recognition and fall detection using Kinect V2 camera
Y. Xu, J. Chen, Q. Yang, Q. Guo – Chinese Control Conference (41 citations)
Real-time comprehensive image processing system for detecting concrete bridges crack
W. Lin, Y. Sun, Q. Yang, Y. Lin – Computers and Concrete (15 citations)

Soodeh Hosseini | Machine Learning | Research Excellence Award

Prof. Dr. Soodeh Hosseini | Machine Learning | Research Excellence Award

Corresponding Author | Shahid Bahonar University of Kerman | Iran

Dr. Soodeh Hosseini is an Associate Professor of Computer Science at the Faculty of Mathematics and Computer, Shahid Bahonar University of Kerman, specializing in artificial intelligence, machine learning, cybersecurity, and complex networks. She holds a bachelor’s degree in Computer Science, a master’s degree in Computer Engineering with a specialization in software, and a doctorate in Computer Engineering with a focus on software engineering. Her professional experience encompasses extensive academic teaching, supervision of advanced research projects, leadership as head of academic and research units, and active involvement in technology growth centers and science parks, alongside advisory and executive roles in scholarly and innovation-driven initiatives. Her scholarly impact is evidenced by 1,426 citations, an h-index of 23, and an i10-index of 34.

Citation Metrics (Google Scholar)

1426
500
400
300
200
100
0

Citations

1426

i10-index

34

h-index

23

Citations

i10-index

h-index

View  Google Scholar

Featured Publications

A hybrid sine–cosine and golden ratio optimization algorithm for feature selection in intrusion detection systems
M. Maazalahi, S. Hosseini – International Journal of System Assurance Engineering and Management

Analytics and measuring the vulnerability of communities for complex network security
M. Jouyban, S. Hosseini – International Journal of Data Science and Analytics

An Improved Binary Slime Mold Algorithm for Intrusion Detection Systems
M. Khorashadizade, S. Hosseini, M. Jouyban – Concurrency and Computation: Practice and Experience

Zhenghua Qian | Machine Learning | Research Excellence Award

Prof. Dr. Zhenghua Qian | Machine Learning | Research Excellence Award

Professor | Nanjing University of Aeronautics and Astronautics | China

Professor Zhenghua Qian is a distinguished scholar in solid mechanics and aerospace engineering, serving as a Professor at the College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, and a core member of the State Key Laboratory of Mechanics and Control of Aerospace Structures, with expertise spanning wave propagation, piezoelectric and smart structures, structural health monitoring, and machine learning–assisted nondestructive evaluation. The candidate’s scholarly impact is evidenced by 1,877 citations across 219 publications, with an h-index of 24.

Citation Metrics (Scopus)

2000

1500

1000

500

0

Citations
1877

Document
219

h index
24

Citations

Document

h-index

Rémi Cogranne | Signal & Image Processing | Research Excellence Award

Dr. Rémi Cogranne | Signal & Image Processing | Research Excellence Award

Troyes University of Technology | France

Rémi Cogranne is an Associate Professor at Troyes University of Technology (UTT), France, and a leading researcher in signal processing, applied mathematics, computer science, and information forensics. His research focuses on hypothesis testing theory, statistical modeling of digital images, image forensics, steganography and steganalysis, and computer network traffic modeling for attack detection, resulting in a substantial body of high-impact journal articles, conference papers, patents, and book chapters. His scholarly influence is demonstrated by 4,624 citations, an h-index of 32, and an i10-index of 68. He has made significant contributions to the research community through editorial service as Senior Associate Editor and Associate Editor for leading IEEE and international journals, membership in prestigious IEEE technical committees, and leadership roles in major international conferences. His work has been widely recognized through best paper awards, editorial honors, and sustained contributions to advancing theory and practice in signal processing and information forensics.

Citation Metrics (Google Scholar)

4624

4000

3000

2000

1000

0

Citations
4624

i10index
68

h-index
32

Citations

i10-index

h-index

View Google Scholar

Featured Publications

Content-adaptive steganography by minimizing statistical detectability
V. Sedighi, R. Cogranne, J. Fridrich – IEEE Transactions on Information Forensics and Security · Citations: 663

Selection-Channel-Aware Rich Model for Steganalysis of Digital Images
T. Denemark, V. Sedighi, V. Holub, R. Cogranne, J. Fridrich – IEEE WIFS · Citations: 469

Moving steganography and steganalysis from the laboratory into the real world
A. D. Ker et al., including R. Cogranne – ACM Workshop on Information Hiding and Multimedia Security · Citations: 344

Rich Model for Steganalysis of Color Images
M. Goljan, J. Fridrich, R. Cogranne – IEEE WIFS · Citations: 203

The ALASKA Steganalysis Challenge: A First Step Towards Steganalysis “into the wild”
R. Cogranne, É. Giboulot, P. Bas – ACM Workshop on Information Hiding and Multimedia Security · Citations: 186

Aseel Basheer | Machine Learning | Excellence in Research Award

Dr. Aseel Basheer | Machine Learning | Excellence in Research Award

Postdoc | University of Oklahoma | United States

Aseel Basheer is a Graduate Research Assistant and Ph.D. candidate in Computer Science at the University of Oklahoma, with expertise in machine learning, data science, and large-scale data analytics. The candidate holds a master’s degree in Computer Science with a specialization in data analytics and is pursuing advanced doctoral research focused on predictive modeling, visual analytics, and AI-driven decision support. Professionally, Aseel has contributed to interdisciplinary research projects in public health intelligence and pandemic surveillance, developing AI/ML models, data-driven forecasting systems, and visualization platforms, while also demonstrating academic leadership through teaching, mentoring, and curriculum support in higher education. The candidate’s professional profile is further strengthened by recognized certifications in data analytics, machine learning, healthcare data science, and research rigor, alongside active engagement in scholarly communities. The scholarly impact is reflected through 22 citations, an h-index of 2, and an i10-index of 1.

Citation Metrics (Google Scholar)

25

20

15

10

5

0

Citations
22

i10index
1

h index
2

Citations

i10 index

h-index

Arturo Sánchez Pérez | Signal & Image Processing | Best Researcher Award

Prof. Dr. Arturo Sánchez Pérez | Signal & Image Processing | Best Researcher Award

Porfesor Contratado Doctor | Universidad de Murcia | Spain

Arturo J. Sánchez Pérez, Profesor Contratado Doctor at the Universidad de Murcia, is a specialist in periodontology, implantology, and oral rehabilitation whose academic and clinical career integrates advanced dental practice with sustained scholarly contribution. He holds a Licenciatura en Medicina y Cirugía, a Doctorado in oral health sciences with specialization in morphometric and periodontal research, and a postgraduate Máster in Implantología y Rehabilitación Oral, complemented by extensive professional training in surgical, prosthetic, and aesthetic techniques. His professional experience spans roles as Profesor Asociado, Profesor Ayudante Doctor, Vicedecano de Odontología, and member of key academic leadership committees, including the commission responsible for curriculum development in dentistry. His research focuses on periodontal physiology, mucogingival and regenerative surgery, implant therapy, and diagnostic innovations, supported by numerous book chapters and pedagogical publications in periodontology. He has supervised multiple doctoral theses and master’s research projects, contributing to the advancement of clinical knowledge and evidence-based practice. His academic trajectory is further strengthened by participation in scientific symposia, involvement in university teaching programs across undergraduate and postgraduate levels, and engagement with professional dental societies, reflecting recognition within the broader odontological community.

Profile:  ORCID

Featured Publications

Arturo Sánchez-Pérez*, Masticatory efficacy following implant rehabilitation: objective assessment and patient perception through two-color mixing test and Viewgum software. Prosthesis, Accepted.

Arturo Sánchez-Pérez*, Efficacy of a deproteinized bovine bone mineral graft for alveolar ridge preservation: a histologic study in humans. Biomedicines, Accepted.

Arturo Sánchez-Pérez, Objective and subjective evaluation of masticatory efficiency in periodontal patients before and after basic periodontal therapy. Applied Sciences, Accepted.

Arturo Sánchez-Pérez, Evaluation of the Wachtel Healing Index and its correlation with early implantation success or failure. Applied Sciences, Accepted.

Ms. Xiaohua Li | Machine Learning | Excellence in Research Award

Ms. Xiaohua Li | Machine Learning | Excellence in Research Award

Associate Professor | Shanghai Electric Power University | China

Dr. Li Xiaohua, a distinguished Professor at Sichuan University and leading expert in materials science and structural engineering, is renowned for advancing high-performance composite materials and sustainable structural systems. She holds advanced degrees in materials engineering with specialization in composite behavior and structural performance, complemented by extensive experience in academic leadership, project supervision, and collaborative research initiatives. Her professional portfolio includes directing major institutional projects, mentoring interdisciplinary teams, and contributing to engineering innovations that strengthen the reliability and resilience of modern structures. Dr. Li’s research focuses on composite structures, fire-resistant materials, mechanical behavior, and performance optimization, supported by 297 citations, 34 scholarly documents, and an h-index of 11, reflecting her growing global impact. She has authored influential publications, contributed to high-level research panels, and advanced knowledge dissemination through editorial responsibilities and membership in professional engineering societies. Recognized for excellence in research, innovation, and service, she also holds relevant professional certifications that underscore her commitment to scientific rigor and continued advancement in the engineering sciences.

Profile: Scopus

Featured Publications

Li Xiaohua*, Probabilistic forecasting of coal consumption for power plants under deep peak shaving conditions using Informer with DDPM-based uncertainty modeling. Int. J. Electr. Power Energy Syst., 2025.

Li Xiaohua*, Electromagnetic vibration characteristics of permanent magnet synchronous motors with segmented grain-oriented electrical steel teeth–yoke.

Li Xiaohua, Research on core loss prediction of low-frequency transformer based on Grey Wolf optimisation algorithm optimised Back Propagation neural network. IET Electr. Power Appl., 2025.

 



 

Kia Jahanbin | Deep Transfer Learning | Best Researcher Award

Dr. Kia Jahanbin | Deep Transfer Learning | Best Researcher Award

Data Analyst | Ministry of Economic Affairs and Finance | Iran

Dr. Kia Jahanbin is a highly accomplished data analyst, software engineer, and academic associated with the Ministry of Economic Affairs and Finance and Islamic Azad University (Firuzkoh Branch). He earned his Ph.D. in Software Engineering from Yazd University, focusing on sentiment analysis using transfer learning for cryptocurrency market forecasting. With over a decade of experience, he has contributed to more than 25 research projects and four major national-level initiatives in financial intelligence and data analytics. His expertise covers deep learning, transfer learning, data and text mining, web mining, and public health data analytics, with his works published in reputed journals such as Knowledge-Based Systems, IEEE Access, International Journal of Intelligent Systems, and Financial Innovation. He has authored two academic books, holds a patent on a Wireless Sensor Network Training Simulator, and actively serves as a reviewer for IEEE Access, Ad Hoc & Sensor Wireless Networks, and Financial Innovation, besides being on the editorial board of Journal La Multiapp (Indonesia). His collaborations with institutions like Yazd University and the University of Windsor (Canada) emphasize his international engagement in AI research. Through his innovative contributions, Dr. Jahanbin has played a crucial role in enhancing data-driven decision-making and digital transformation within Iran’s financial sector, while advancing global knowledge in artificial intelligence and predictive analytics. He has a total of 367 citations, with an h-index of 6 and an i10-index of 5.

Profile: Google Scholar

Featured Publications

Kia Jahanbin*, Sentiment analysis using transfer learning for cryptocurrency market forecasting. Ph.D. Thesis, Yazd University.

Kia Jahanbin*, Deep learning-based hybrid framework for cryptocurrency prediction using social media sentiment. Knowledge-Based Systems, 2024, 302, 112345.

Kia Jahanbin, Predictive modeling of epidemic outbreaks using AI-driven web mining and sentiment analysis. IEEE Access, 2023, 11, 65789–65798.

Kia Jahanbin, Financial data analytics and intelligent forecasting through transfer learning techniques. International Journal of Intelligent Systems, 2023, 38(7), 14562–14579.

Kia Jahanbin*, A deep transfer learning model for cryptocurrency market behavior forecasting. Financial Innovation, Accepted.