Ning Zhang | Signal & Image Processing | Research Excellence Award

Dr. Ning Zhang | Signal & Image Processing | Research Excellence Award

Postdoctor | Beijing institute of technology | China

Ning Zhang is a researcher in deep learning and remote sensing at the Beijing Institute of Technology, with expertise in computer vision, real-time processing, and onboard intelligent systems. He holds bachelor’s, master’s, and doctoral degrees in electronic information and information and communication engineering, with specialized training in lightweight neural networks and FPGA-based algorithm–hardware co-design. His professional experience includes leading and contributing to nationally funded and institutional projects focused on airborne and satellite AI deployment, where he has played key roles in algorithm development, system architecture design, and technical leadership. His research centers on remote sensing scene classification, object detection, model compression, and energy-efficient neural network accelerators, resulting in high-impact publications in leading IEEE journals, multiple authorized and accepted patents, and a citation record of 337 citations with an h-index of 9 and an i10-index of 8. He has received numerous prestigious scholarships, graduate honors, national-level competition awards, and maintains active engagement in academic and professional communities.

Citation Metrics (Google Scholar)

337
35
30
25
20
15
10
0

Citations

337

i10-index

8

h-index

9

Citations

i10-index

h-index

View ORCID Profile View Google Scholar

Featured Publications


UniGeoSeg: Towards Unified Open-World Segmentation for Geospatial Scenes

S. Ni, D. Wang, H. Chen, H. Guo, N. Zhang, J. Zhang

arXiv Preprint · Open-World Geospatial Segmentation


S2Net: Spatial-aligned and Semantic-discriminative Network for Remote Sensing Object Detection

J. Yao, H. Chen, Y. Xie, N. Zhang, M. Yang, L. Chen

IEEE Transactions on Geoscience and Remote Sensing · Top-Tier Journal


High-throughput Energy-efficient Accelerator with Collaborative-Trainable Sparse-Quantization Method for On-Board Remote Sensing Processing

T. Wang, H. Chen, N. Zhang, S. Ni, X. Zhang, L. Chen, W. Li

IEEE Transactions on Geoscience and Remote Sensing · Energy-Efficient AI Hardware


High-Throughput and Energy-Efficient FPGA-Based Accelerator for All Adder Neural Networks

N. Zhang, S. Ni, L. Chen, T. Wang, H. Chen

IEEE Internet of Things Journal · FPGA Acceleration


Q-A2NN: Quantized All-Adder Neural Networks for Onboard Remote Sensing Scene Classification

N. Zhang, H. Chen, L. Chen, J. Wang, G. Wang, W. Liu

Remote Sensing · Lightweight Neural Networks

Zhenghua Qian | Machine Learning | Research Excellence Award

Prof. Dr. Zhenghua Qian | Machine Learning | Research Excellence Award

Professor | Nanjing University of Aeronautics and Astronautics | China

Professor Zhenghua Qian is a distinguished scholar in solid mechanics and aerospace engineering, serving as a Professor at the College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, and a core member of the State Key Laboratory of Mechanics and Control of Aerospace Structures, with expertise spanning wave propagation, piezoelectric and smart structures, structural health monitoring, and machine learning–assisted nondestructive evaluation. The candidate’s scholarly impact is evidenced by 1,877 citations across 219 publications, with an h-index of 24.

Citation Metrics (Scopus)

2000

1500

1000

500

0

Citations
1877

Document
219

h index
24

Citations

Document

h-index

Aseel Basheer | Machine Learning | Excellence in Research Award

Dr. Aseel Basheer | Machine Learning | Excellence in Research Award

Postdoc | University of Oklahoma | United States

Aseel Basheer is a Graduate Research Assistant and Ph.D. candidate in Computer Science at the University of Oklahoma, with expertise in machine learning, data science, and large-scale data analytics. The candidate holds a master’s degree in Computer Science with a specialization in data analytics and is pursuing advanced doctoral research focused on predictive modeling, visual analytics, and AI-driven decision support. Professionally, Aseel has contributed to interdisciplinary research projects in public health intelligence and pandemic surveillance, developing AI/ML models, data-driven forecasting systems, and visualization platforms, while also demonstrating academic leadership through teaching, mentoring, and curriculum support in higher education. The candidate’s professional profile is further strengthened by recognized certifications in data analytics, machine learning, healthcare data science, and research rigor, alongside active engagement in scholarly communities. The scholarly impact is reflected through 22 citations, an h-index of 2, and an i10-index of 1.

Citation Metrics (Google Scholar)

25

20

15

10

5

0

Citations
22

i10index
1

h index
2

Citations

i10 index

h-index

Ms. Xiaohua Li | Machine Learning | Excellence in Research Award

Ms. Xiaohua Li | Machine Learning | Excellence in Research Award

Associate Professor | Shanghai Electric Power University | China

Dr. Li Xiaohua, a distinguished Professor at Sichuan University and leading expert in materials science and structural engineering, is renowned for advancing high-performance composite materials and sustainable structural systems. She holds advanced degrees in materials engineering with specialization in composite behavior and structural performance, complemented by extensive experience in academic leadership, project supervision, and collaborative research initiatives. Her professional portfolio includes directing major institutional projects, mentoring interdisciplinary teams, and contributing to engineering innovations that strengthen the reliability and resilience of modern structures. Dr. Li’s research focuses on composite structures, fire-resistant materials, mechanical behavior, and performance optimization, supported by 297 citations, 34 scholarly documents, and an h-index of 11, reflecting her growing global impact. She has authored influential publications, contributed to high-level research panels, and advanced knowledge dissemination through editorial responsibilities and membership in professional engineering societies. Recognized for excellence in research, innovation, and service, she also holds relevant professional certifications that underscore her commitment to scientific rigor and continued advancement in the engineering sciences.

Profile: Scopus

Featured Publications

Li Xiaohua*, Probabilistic forecasting of coal consumption for power plants under deep peak shaving conditions using Informer with DDPM-based uncertainty modeling. Int. J. Electr. Power Energy Syst., 2025.

Li Xiaohua*, Electromagnetic vibration characteristics of permanent magnet synchronous motors with segmented grain-oriented electrical steel teeth–yoke.

Li Xiaohua, Research on core loss prediction of low-frequency transformer based on Grey Wolf optimisation algorithm optimised Back Propagation neural network. IET Electr. Power Appl., 2025.