Assist. Prof. Dr. Taame Abraha Berhe | Renewable Energy Systems | Editorial Board Member

Assist. Prof. Dr. Taame Abraha Berhe | Renewable Energy Systems | Editorial Board Member

Postdoctoral Fellow | Adigrat university | Ethiopia

Taame Abraha Berhe is a Postdoctoral Fellow in Applied and Theoretical Chemistry at a leading institution, specializing in electrochemistry, physical chemistry, materials and energy chemistry, photochemistry, nanotechnology, and advanced characterization techniques. He holds a PhD in Applied Science and Technology, an MSc in Physical Chemistry, and a BEd in Chemistry, building a strong academic foundation that supports his interdisciplinary scientific work. His professional experience includes serving as Assistant Professor, Department Head, and College Dean, alongside extensive teaching and research roles in chemistry and chemical engineering. His research focuses on halide perovskites, sustainable energy materials, surface modification technologies, and nanostructured systems, supported by numerous publications in reputed journals and collaborative projects involving synchrotron radiation facilities. He has contributed significantly to the understanding of material stability, catalytic processes, and energy‐related nanomaterials. Dr. Berhe has been recognized with multiple reviewer excellence awards and has served as reviewer for several international journals, including those under the Royal Society of Chemistry. He also holds editorial board positions in chemistry and applied science journals and actively participates in international scientific committees across major conferences. His professional memberships include the Royal Society of Chemistry, American Physical Society, African Materials Research Society, and multiple global scientific networks, reflecting his commitment to advancing materials science and fostering international research collaboration.

Profile: ORCID

Featured Publications

Taame Abraha Berhe*, Nano-engineering halide perovskites for energy harvesting, nano-plasmon sensing, and photoflexoelectric applications. Energy Adv., Accepted.

Taame Abraha Berhe*, Croton macrostachyus leaf-mediated biosynthesis of copper oxide nanoparticles for catalytic reduction of organic dyes. Mater. Res. Express., Accepted.

Taame Abraha Berhe*, Multifunctional properties of halide perovskites: coordination engineering, electronic interactions, and advanced energy applications. Inorganics., Accepted.

 

Mohamed Taieb Krakdia | Smart Grids and Microgrids | Innovative Research Award

Mr. Mohamed Taieb Krakdia | Smart Grids and Microgrids | Innovative Research Award

Mohamed Taieb Krakdia | Proceeds, Energies, Environment and Electrical Systems (PEESE) | Tunisia

Mr. Mohamed Taieb Krakdia is a Distinguished Senior Professor at the Ministry of Education, Tunisia, specializing in electrical engineering and renewable energy systems. He holds a Master’s degree in Electrical Engineering from Université Elhadj Lakhder, Algeria, and a Professional Master’s in Renewable Energies and Energy Efficiency from ISET Tunisia, and is currently pursuing doctoral research focused on optimizing renewable energy resources in microgrids. His professional career spans over two decades, during which he has served as Senior Professor Emeritus, Principal Teacher, and Senior Secondary School Teacher, contributing extensively to academic instruction, curriculum development, and mentoring of future engineers. His research interests include microgrid optimization, renewable energy integration, and advanced control systems, resulting in notable publications such as studies on sliding-mode and Lyapunov-based control for DC microgrids and hybrid photovoltaic-wind generation systems with fuel cells and battery storage. Mohamed Taieb’s contributions extend beyond teaching and research, including leadership in educational programs, project development, and participation in professional knowledge-sharing platforms. He has been recognized for his academic excellence through professional certifications such as CAPES and has engaged in editorial and peer-review activities, further strengthening the research community. His dedication to innovation, research, and education positions him as a valuable contributor to advancing sustainable energy technologies and academic excellence.

Profile: ORCID

Featured Publications

Krakdia, M.T.*, Sliding-Mode and Lyapunov Function Based Control for a DC Microgrid with Renewable Generation, a Solid Oxide Fuel Cell and Battery Storage. In: Advances in Renewable Energy Systems, Springer, 2024, DOI:10.1007/978-981-97-6148-7_16.

Krakdia, M.T.*, Control for a DC Microgrid for Photovoltaic–Wind Generation with a Solid Oxide Fuel Cell, Battery Storage, Dump Load (Aqua-Electrolyzer) and Three-Phase Four-Leg Inverter (4L4W). Clean Technol., 2025, 7(3), 79

Krakdia, M.T., Optimization of Renewable Energy Resources in a Microgrid (PhD Research Work). ENIG, Tunisia, 2020.

Krakdia, M.T., Renewable Energies and Energy Efficiency: Professional Master’s Thesis, ISET Sidi Bouzid, Tunisia, 2019.

Krakdia, M.T., Electrical Engineering Engineer’s Thesis. Université Elhadj Lakhder Batna, Algeria, 2008.

Zongyu Gao | Energy Storage Systems | Best Researcher Award

Zongyu Gao | Energy Storage Systems | Best Researcher Award

Professor | Shihezi University | China

Dr. Zong-Yu Gao, a distinguished researcher and faculty member at ShiHeZi University, is an expert in electric and intelligent agricultural machinery with a focus on renewable energy utilization. He holds a Ph.D. in Mechanical and Electronic Engineering from Beijing University of Technology, an M.S. in Computer Technology and Application, and a B.S. in Automation from Lanzhou JiaoTong University. His professional journey spans roles as Senior Engineer at the Academy of Opto-Electronics, Chinese Academy of Sciences, Lecturer at Beijing Union University, and multiple postdoctoral fellowships in electrical engineering and opto-electronics, demonstrating a strong integration of theory and application. Dr. Gao’s research contributions encompass the development of intelligent agricultural machinery systems, energy-efficient solutions, and the advancement of renewable energy applications in agriculture, leading to impactful publications and practical implementations. He is recognized for his leadership in pioneering projects, mentoring young researchers, and actively contributing to academic collaboration and technology transfer. His dedication to innovation and his record of excellence make him a deserving candidate for the Best Researcher Award.

Profile: Scopus

Featured Publications

Zong-Yu Gao*, Electric agricultural machinery and intelligent agricultural systems for sustainable farming. J. Agric. Eng. Res., Accepted.

Zong-Yu Gao*, Renewable energy utilization and its integration into precision agriculture machinery. Renew. Energy, 2024, 215, 119875.

Zong-Yu Gao*, Development of energy-efficient control systems for intelligent farm equipment. Comput. Electron. Agric., 2023, 205, 107564.

Zong-Yu Gao*, Innovation in electric-powered agricultural machinery for low-carbon farming solutions. Biosyst. Eng., 2022, 218, 45-53.

Kewei Lin | Renewable Energy Systems | Best Researcher Award

Kewei Lin | Renewable Energy Systems | Best Researcher Award

Assistant Professor | National Kaohsiung University of Science and Technology | Taiwan

Dr. Ke-Wei Lin is an Assistant Professor at the National Kaohsiung University of Science and Technology, specializing in hydrogen energy systems, fuel cells, and clean transportation technologies. He holds a Ph.D. in System and Naval Mechatronic Engineering, as well as M.S. and B.S. degrees in Naval Architecture and Marine Engineering, all from National Cheng Kung University. Dr. Lin’s professional experience includes serving as Senior Engineer and Project Leader at the Automotive Research & Testing Center, where he led initiatives in hybrid powertrain development, fuel cell integration, and advanced clean engine technologies, and as Project Manager at Formosa Petrochemical Corporation. His research focuses on hydrogen energy, fuel cell and Li-ion battery hybrid systems, thermochemical reforming, exergy and techno-economic analysis, and sustainable mobility, with several publications advancing fuel cell vehicle applications and emission reduction strategies. He has contributed as a committee member for the EPA Sustainable Project Loan Review, demonstrating his leadership in environmental and energy policy initiatives. Dr. Lin has been recognized for his impactful research through professional memberships, technical committee roles, and contributions to collaborative industry-academic projects, reinforcing his commitment to advancing renewable energy and green transportation solutions.

Profile: Scopus

Featured Publications

  1. Lin K.W.*, Development of hybrid PEM fuel cell and Li-ion battery systems for next-generation electric vehicles. Int. J. Hydrogen Energy, 2024, Accepted.

  2. Lin K.W.*, Wu H.T., Chen C.Y., Techno-economic analysis of hydrogen production via thermochemical reforming of bioethanol. Energy Convers. Manag., 2023, 297, 117454.

  3. Lin K.W.*, Yang M.S., Exergy and environmental assessment of HT-PEM fuel cell systems for maritime applications. Appl. Energy, 2023, 341, 121052.

  4. Lin K.W.*, Liu P.J., Integration of catalyst development and reforming processes for high-efficiency hydrogen generation. Fuel Process. Technol., 2022, 234, 107339.

  5. Lin K.W.*, Chen S.H., Clean combustion strategies for biodiesel engines: Experimental and modeling approaches. Renew. Energy, 2021, 180, 890–902.