Beomju Kim | Power System Stability | Research Excellence Award

Mr. Beomju Kim | Power System Stability | Research Excellence Award

Power System | Korea University | South Korea

Kim Beomju is a Ph.D. integrated program researcher in the Department of Electrical and Electronic Engineering at Korea University, specializing in power and energy systems. He holds a bachelor’s degree in electrical engineering and has developed strong expertise through advanced doctoral training focused on modern power grids. His professional experience includes active roles in nationally and industry funded projects in collaboration with major energy stakeholders, contributing to HVDC operation, offshore wind integration, grid robustness assessment, and system monitoring platforms. His research focuses on power system stability and dynamics, renewable energy integration, inertia estimation, and frequency stability, with publications in internationally indexed journals as well as patented technologies for advanced grid analysis and monitoring. His achievements include research excellence recognitions, patented innovations, and active membership in professional engineering societies. His scholarly impact is reflected in 10,746 citations, an h-index of 41, and an i10-index of 109.

Citation Metrics (Google Scholar)

10746
500
400
300
200
100
0

Citations

10746

109

h-index

41

Citations

h-index

View ResearchGate View Google Scholar View ORCID Profile

Featured Publications

Attack Vulnerability of Complex Networks
P. Holme, B. J. Kim, C. N. Yoon, S. K. Han
Physical Review E · Citations: 2564

Growing Scale-Free Networks with Tunable Clustering
P. Holme, B. J. Kim
Physical Review E · Citations: 1511

Synchronization on Small-World Networks
H. Hong, M. Y. Choi, B. J. Kim
arXiv Preprint · Citations: 573

Vertex Overload Breakdown in Evolving Networks
P. Holme, B. J. Kim
Physical Review E · Citations: 338

Factors That Predict Better Synchronizability on Complex Networks
H. Hong, B. J. Kim, M. Y. Choi, H. Park
Physical Review E · Citations: 314

Yaser Damchi | Smart Grids and Microgrids | Excellence in Research Award

Dr. Yaser Damchi | Smart Grids and Microgrids | Excellence in Research Award

Associate Professor | Shahrood University of Technology | Iran

Yaser Damchi is an Associate Professor in the Faculty of Electrical Engineering at Shahrood University of Technology, specializing in electrical power engineering with a strong focus on power system protection and reliability. He earned his doctoral, master’s, and bachelor’s degrees in electrical power engineering with advanced specialization in protection systems, relay coordination, and transient analysis. His professional experience includes academic leadership as Head of the Power Department, establishment of a protection and relays digital laboratory, and management and participation in numerous industry-linked power system projects addressing protection design, reliability assessment, and renewable energy integration.  The candidate’s scholarly impact is evidenced by 672 citations, an h-index of 14, and an i10-index of 24.

Citation Metrics (Scopus)

672
500
400
300
200
100
0

Citations

672

i10-index

24

h-index

14

Citations

i10-index

h-index

View  Google Scholar View  ORCID Profile

Featured Publications

MILP approach for optimal coordination of directional overcurrent relays in interconnected power systems
Y. Damchi, M. Dolatabadi, H.R. Mashhadi, J. Sadeh – Electric Power Systems Research

Optimal coordination of directional overcurrent relays in a microgrid system using a hybrid particle swarm optimization
Y. Damchi, H.R. Mashhadi, J. Sadeh, M. Bashir – International Conference on Advanced Power System Automation

Optimal coordination of distance and overcurrent relays considering a non-standard tripping characteristic for distance relays
Y. Damchi, J. Sadeh, H.R. Mashhadi – IET Generation, Transmission & Distribution

Reliability-centred maintenance for circuit breakers in transmission networks
M. Abbasghorbani, H.R. Mashhadi, Y. Damchi – IET Generation, Transmission & Distribution

Prof. Xubin Liu | Smart Grids and Microgrids | Editorial Board Member

Prof. Xubin Liu | Smart Grids and Microgrids | Editorial Board Member

Professor | Central South University | China

Dr. Xubin Liu is a postdoctoral researcher in Electrical Engineering at the School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, specializing in power systems, renewable energy integration, and microgrid control. He holds a Ph.D. in Electrical Engineering from Hunan University with joint doctoral training at Tsinghua University, preceded by a bachelor’s degree in Electrical Engineering from Northwest University for Nationalities. His professional experience includes leading and contributing to advanced research projects on intelligent distribution networks, multi-energy systems, frequency–voltage coordination, fault current management, energy storage control, and real-time simulation platforms for active distribution networks. Dr. Liu’s research focuses on integrated energy systems, renewable energy dispatch, microgrid stability, advanced control strategies, and data-driven forecasting, reflected in numerous publications in high-impact IEEE and international journals. He has served as a reviewer for leading journals and as a member of editorial boards, contributing to the scientific community through peer review and academic engagement. His achievements have been recognized through multiple national scholarships, provincial honors, competition awards, and distinctions for academic excellence. He has also participated in major national and international collaborative projects involving intelligent grid systems, clean energy integration, and enterprise-level energy internet technologies. Dr. Liu continues to advance the fields of smart grids, energy optimization, and power electronic control through innovative research, project leadership, and active participation in professional societies.

Profile: ORCID

Featured Publications

Xubin Liu*, Frequency-Voltage synergy support method based on grid strength for VSC-MTDC integrated distributed offshore wind farms. IEEE Trans. Power Syst., 2025, 40(4), 3543–3562.

Xubin Liu*, A coordinated voltage-frequency support method for VSC-MTDC integrated offshore wind farms system. IEEE Trans. Power Syst., 2024, 39(1), 1485–1502.

Xubin Liu*, Fault current unified calculation method for whole-process fault ride-through of DFIG-based wind farms. IEEE Trans. Smart Grid, 2024, 15(1), 485–503.

Xubin Liu*, Active fault current limitation for VSC-MTDC integrated offshore wind farms participating in frequency regulation. IEEE Trans. Sustain. Energy, 2024, 15(2), 773–788.

Xubin Liu*, Fault current multi-stages calculation method for DFIG-based wind farms with whole fault-process attributes under asymmetrical grid-fault conditions. IEEE Trans. Sustain. Energy, 2024, 15(4), 2361–2379.

Mohamed Taieb Krakdia | Smart Grids and Microgrids | Innovative Research Award

Mr. Mohamed Taieb Krakdia | Smart Grids and Microgrids | Innovative Research Award

Mohamed Taieb Krakdia | Proceeds, Energies, Environment and Electrical Systems (PEESE) | Tunisia

Mr. Mohamed Taieb Krakdia is a Distinguished Senior Professor at the Ministry of Education, Tunisia, specializing in electrical engineering and renewable energy systems. He holds a Master’s degree in Electrical Engineering from Université Elhadj Lakhder, Algeria, and a Professional Master’s in Renewable Energies and Energy Efficiency from ISET Tunisia, and is currently pursuing doctoral research focused on optimizing renewable energy resources in microgrids. His professional career spans over two decades, during which he has served as Senior Professor Emeritus, Principal Teacher, and Senior Secondary School Teacher, contributing extensively to academic instruction, curriculum development, and mentoring of future engineers. His research interests include microgrid optimization, renewable energy integration, and advanced control systems, resulting in notable publications such as studies on sliding-mode and Lyapunov-based control for DC microgrids and hybrid photovoltaic-wind generation systems with fuel cells and battery storage. Mohamed Taieb’s contributions extend beyond teaching and research, including leadership in educational programs, project development, and participation in professional knowledge-sharing platforms. He has been recognized for his academic excellence through professional certifications such as CAPES and has engaged in editorial and peer-review activities, further strengthening the research community. His dedication to innovation, research, and education positions him as a valuable contributor to advancing sustainable energy technologies and academic excellence.

Profile: ORCID

Featured Publications

Krakdia, M.T.*, Sliding-Mode and Lyapunov Function Based Control for a DC Microgrid with Renewable Generation, a Solid Oxide Fuel Cell and Battery Storage. In: Advances in Renewable Energy Systems, Springer, 2024, DOI:10.1007/978-981-97-6148-7_16.

Krakdia, M.T.*, Control for a DC Microgrid for Photovoltaic–Wind Generation with a Solid Oxide Fuel Cell, Battery Storage, Dump Load (Aqua-Electrolyzer) and Three-Phase Four-Leg Inverter (4L4W). Clean Technol., 2025, 7(3), 79

Krakdia, M.T., Optimization of Renewable Energy Resources in a Microgrid (PhD Research Work). ENIG, Tunisia, 2020.

Krakdia, M.T., Renewable Energies and Energy Efficiency: Professional Master’s Thesis, ISET Sidi Bouzid, Tunisia, 2019.

Krakdia, M.T., Electrical Engineering Engineer’s Thesis. Université Elhadj Lakhder Batna, Algeria, 2008.