Ms. Xiaohua Li | Machine Learning | Excellence in Research Award

Ms. Xiaohua Li | Machine Learning | Excellence in Research Award

Associate Professor | Shanghai Electric Power University | China

Dr. Li Xiaohua, a distinguished Professor at Sichuan University and leading expert in materials science and structural engineering, is renowned for advancing high-performance composite materials and sustainable structural systems. She holds advanced degrees in materials engineering with specialization in composite behavior and structural performance, complemented by extensive experience in academic leadership, project supervision, and collaborative research initiatives. Her professional portfolio includes directing major institutional projects, mentoring interdisciplinary teams, and contributing to engineering innovations that strengthen the reliability and resilience of modern structures. Dr. Li’s research focuses on composite structures, fire-resistant materials, mechanical behavior, and performance optimization, supported by 297 citations, 34 scholarly documents, and an h-index of 11, reflecting her growing global impact. She has authored influential publications, contributed to high-level research panels, and advanced knowledge dissemination through editorial responsibilities and membership in professional engineering societies. Recognized for excellence in research, innovation, and service, she also holds relevant professional certifications that underscore her commitment to scientific rigor and continued advancement in the engineering sciences.

Profile: Scopus

Featured Publications

Li Xiaohua*, Probabilistic forecasting of coal consumption for power plants under deep peak shaving conditions using Informer with DDPM-based uncertainty modeling. Int. J. Electr. Power Energy Syst., 2025.

Li Xiaohua*, Electromagnetic vibration characteristics of permanent magnet synchronous motors with segmented grain-oriented electrical steel teeth–yoke.

Li Xiaohua, Research on core loss prediction of low-frequency transformer based on Grey Wolf optimisation algorithm optimised Back Propagation neural network. IET Electr. Power Appl., 2025.