Beomju Kim | Power System Stability | Research Excellence Award

Mr. Beomju Kim | Power System Stability | Research Excellence Award

Power System | Korea University | South Korea

Kim Beomju is a Ph.D. integrated program researcher in the Department of Electrical and Electronic Engineering at Korea University, specializing in power and energy systems. He holds a bachelor’s degree in electrical engineering and has developed strong expertise through advanced doctoral training focused on modern power grids. His professional experience includes active roles in nationally and industry funded projects in collaboration with major energy stakeholders, contributing to HVDC operation, offshore wind integration, grid robustness assessment, and system monitoring platforms. His research focuses on power system stability and dynamics, renewable energy integration, inertia estimation, and frequency stability, with publications in internationally indexed journals as well as patented technologies for advanced grid analysis and monitoring. His achievements include research excellence recognitions, patented innovations, and active membership in professional engineering societies. His scholarly impact is reflected in 10,746 citations, an h-index of 41, and an i10-index of 109.

Citation Metrics (Google Scholar)

10746
500
400
300
200
100
0

Citations

10746

109

h-index

41

Citations

h-index

View ResearchGate View Google Scholar View ORCID Profile

Featured Publications

Attack Vulnerability of Complex Networks
P. Holme, B. J. Kim, C. N. Yoon, S. K. Han
Physical Review E · Citations: 2564

Growing Scale-Free Networks with Tunable Clustering
P. Holme, B. J. Kim
Physical Review E · Citations: 1511

Synchronization on Small-World Networks
H. Hong, M. Y. Choi, B. J. Kim
arXiv Preprint · Citations: 573

Vertex Overload Breakdown in Evolving Networks
P. Holme, B. J. Kim
Physical Review E · Citations: 338

Factors That Predict Better Synchronizability on Complex Networks
H. Hong, B. J. Kim, M. Y. Choi, H. Park
Physical Review E · Citations: 314

George Korres | Smart Grids and Microgrids | Research Excellence Award

Mr. George Korres | Smart Grids and Microgrids | Research Excellence Award

Professor | National Technical University of Athens | Greece

George N. Korres is a Professor of Electrical and Computer Engineering at the National Technical University of Athens, specializing in power systems engineering, smart grids, and energy system automation. He earned his Diploma and Ph.D. in Electrical and Computer Engineering with a focus on power systems and state estimation, building a strong academic foundation that underpins his long-standing career in both academia and industry. His professional experience spans academic leadership as Director of the Power Division and Director of the Energy Systems Laboratory, along with significant involvement in large-scale national and international research and development projects related to energy management systems, microgrids, and grid modernization. His scholarly impact is demonstrated by 5,621 citations, an h-index of 42, and an i10-index of 75.

Citation Metrics (Google Scholar)

5621
500
400
300
200
100
0

Citations

5621

i10-index

75

h-index

42

Citations

i10-index

h-index

View  Google Scholar  View Scopus Profile  View ORCID Profile

View ResearchGate

Featured Publications

Taxonomy of PMU Placement Methodologies
N. M. Manousakis, G. N. Korres, P. S. Georgilakis – IEEE Transactions on Power Systems (464 citations)

A Distributed Multiarea State Estimation
G. N. Korres – IEEE Transactions on Power Systems (288 citations)

State Estimation and Bad Data Processing for Systems Including PMU and SCADA Measurements
G. N. Korres, N. M. Manousakis – Electric Power Systems Research (250 citations)

Power System Real-Time Monitoring Using PMU-Based Robust State Estimation
J. Zhao et al., G. N. Korres – IEEE Transactions on Smart Grid (247 citations)

Hardware-in-the-Loop Design and Optimal Setting of Adaptive Protection Schemes for Distribution Systems with Distributed Generation
V. A. Papaspiliotopoulos, G. N. Korres et al. – IEEE Transactions on Power Delivery (234 citations)

Assoc. Prof. Dr. Jinpeng Guo | Power System Stability | Research Excellence Award

Assoc. Prof. Dr. Jinpeng Guo | Power System Stability | Research Excellence Award

Associate Professor | Hohai University | China

Dr. Jinpeng Guo, an Associate Professor at the School of Electrical and Power Engineering at Hohai University, is a specialist in new energy power systems with expertise in renewable energy grid integration, stability analysis, and advanced control strategies for converter-dominated networks. He holds a doctoral degree in Electrical and Computer Engineering from McGill University, a graduate degree in Electrical Engineering from Southeast University, and a bachelor’s degree in Electrical Engineering and Automation from Chongqing University, further enriched by an academic exchange in electrical engineering at Tsinghua University. His professional experience includes leading and contributing to major research initiatives on frequency characteristics, rotor-angle stability, offshore wind power integration through VSC-HVDC systems, synchronous condenser optimization, and wide-area damping control, serving as both project leader and technical director in national and industry-supported programs. Dr. Guo’s research focuses on data-driven modeling, inertia estimation, dynamic stability enhancement, and coordinated active–reactive power control, supported by publications in reputable journals and international conferences. His scholarly contributions advance power system resilience, renewable energy operational security, and the development of intelligent control methods for modern electric grids. He has been recognized through competitive research funding and active participation in collaborative international projects, professional networks, and academic communities. His academic profile includes 3 citations, 8 documents, and an h-index of 1.

Profiles: Scopus | ORCID

Featured Publications

Guo, Jinpeng*, Quantitative evaluation and sensitivity analysis of carbon emission reduction costs based on optimal scheduling of electric-thermal integrated energy systems. Electric Power Systems Research, 2026, Article in press.

Guo, Jinpeng*, Improved vector current control for the VSC-HVDC converter connected to a very weak AC grid. IEEE Transactions on Circuits and Systems I: Regular Papers.

Guo, Jinpeng*, Data-driven methods in modern power system stability and security. Smart Cyber-Physical Power Systems.