Ning Zhang | Signal & Image Processing | Research Excellence Award

Dr. Ning Zhang | Signal & Image Processing | Research Excellence Award

Postdoctor | Beijing institute of technology | China

Ning Zhang is a researcher in deep learning and remote sensing at the Beijing Institute of Technology, with expertise in computer vision, real-time processing, and onboard intelligent systems. He holds bachelor’s, master’s, and doctoral degrees in electronic information and information and communication engineering, with specialized training in lightweight neural networks and FPGA-based algorithm–hardware co-design. His professional experience includes leading and contributing to nationally funded and institutional projects focused on airborne and satellite AI deployment, where he has played key roles in algorithm development, system architecture design, and technical leadership. His research centers on remote sensing scene classification, object detection, model compression, and energy-efficient neural network accelerators, resulting in high-impact publications in leading IEEE journals, multiple authorized and accepted patents, and a citation record of 337 citations with an h-index of 9 and an i10-index of 8. He has received numerous prestigious scholarships, graduate honors, national-level competition awards, and maintains active engagement in academic and professional communities.

Citation Metrics (Google Scholar)

337
35
30
25
20
15
10
0

Citations

337

i10-index

8

h-index

9

Citations

i10-index

h-index

View ORCID Profile View Google Scholar

Featured Publications


UniGeoSeg: Towards Unified Open-World Segmentation for Geospatial Scenes

S. Ni, D. Wang, H. Chen, H. Guo, N. Zhang, J. Zhang

arXiv Preprint · Open-World Geospatial Segmentation


S2Net: Spatial-aligned and Semantic-discriminative Network for Remote Sensing Object Detection

J. Yao, H. Chen, Y. Xie, N. Zhang, M. Yang, L. Chen

IEEE Transactions on Geoscience and Remote Sensing · Top-Tier Journal


High-throughput Energy-efficient Accelerator with Collaborative-Trainable Sparse-Quantization Method for On-Board Remote Sensing Processing

T. Wang, H. Chen, N. Zhang, S. Ni, X. Zhang, L. Chen, W. Li

IEEE Transactions on Geoscience and Remote Sensing · Energy-Efficient AI Hardware


High-Throughput and Energy-Efficient FPGA-Based Accelerator for All Adder Neural Networks

N. Zhang, S. Ni, L. Chen, T. Wang, H. Chen

IEEE Internet of Things Journal · FPGA Acceleration


Q-A2NN: Quantized All-Adder Neural Networks for Onboard Remote Sensing Scene Classification

N. Zhang, H. Chen, L. Chen, J. Wang, G. Wang, W. Liu

Remote Sensing · Lightweight Neural Networks

Qiaoning Yang | Signal & Image Processing | Best Researcher Award

Assoc. Prof. Dr. Qiaoning Yang | Signal & Image Processing | Best Researcher Award

Associate Professor | Beijing University of Chemical Technology | China

Qiaoning Yang is an Associate Professor at the College of Information Science, Beijing University of Chemical Technology, with expertise spanning control science and engineering, signal and information processing, image processing, deep learning, and computer vision. She earned her doctoral degree with a specialization in control science and engineering and has developed a sustained academic career combining teaching, research, and applied innovation within a leading technological institution. Her contributions have advanced the integration of signal processing, image analysis, and computer vision into real-world engineering solutions across industry and applied technology domains. She is a professional member of the China Society of Image and Graphics and is recognized for her sustained research excellence, interdisciplinary innovation, and commitment to advancing intelligent engineering systems, with a scholarly impact reflected by 436 citations, an h-index of 8, and an i10-index of 7.

Citation Metrics (Google Scholar)

436
300
200
100
0
Citations

436

i10-index

7

h-index

8

Citations

i10-index

h-index

View  Google Scholar View Scopus Profile

Featured Publications

Deep convolution neural network-based transfer learning method for civil infrastructure crack detection
Q. Yang, W. Shi, J. Chen, W. Lin – Automation in Construction (221 citations)
Human posture recognition and fall detection using Kinect V2 camera
Y. Xu, J. Chen, Q. Yang, Q. Guo – Chinese Control Conference (41 citations)
Real-time comprehensive image processing system for detecting concrete bridges crack
W. Lin, Y. Sun, Q. Yang, Y. Lin – Computers and Concrete (15 citations)