Soodeh Hosseini | Machine Learning | Research Excellence Award

Prof. Dr. Soodeh Hosseini | Machine Learning | Research Excellence Award

Corresponding Author | Shahid Bahonar University of Kerman | Iran

Dr. Soodeh Hosseini is an Associate Professor of Computer Science at the Faculty of Mathematics and Computer, Shahid Bahonar University of Kerman, specializing in artificial intelligence, machine learning, cybersecurity, and complex networks. She holds a bachelor’s degree in Computer Science, a master’s degree in Computer Engineering with a specialization in software, and a doctorate in Computer Engineering with a focus on software engineering. Her professional experience encompasses extensive academic teaching, supervision of advanced research projects, leadership as head of academic and research units, and active involvement in technology growth centers and science parks, alongside advisory and executive roles in scholarly and innovation-driven initiatives. Her scholarly impact is evidenced by 1,426 citations, an h-index of 23, and an i10-index of 34.

Citation Metrics (Google Scholar)

1426
500
400
300
200
100
0

Citations

1426

i10-index

34

h-index

23

Citations

i10-index

h-index

View  Google Scholar

Featured Publications

A hybrid sine–cosine and golden ratio optimization algorithm for feature selection in intrusion detection systems
M. Maazalahi, S. Hosseini – International Journal of System Assurance Engineering and Management

Analytics and measuring the vulnerability of communities for complex network security
M. Jouyban, S. Hosseini – International Journal of Data Science and Analytics

An Improved Binary Slime Mold Algorithm for Intrusion Detection Systems
M. Khorashadizade, S. Hosseini, M. Jouyban – Concurrency and Computation: Practice and Experience

Aseel Basheer | Machine Learning | Excellence in Research Award

Dr. Aseel Basheer | Machine Learning | Excellence in Research Award

Postdoc | University of Oklahoma | United States

Aseel Basheer is a Graduate Research Assistant and Ph.D. candidate in Computer Science at the University of Oklahoma, with expertise in machine learning, data science, and large-scale data analytics. The candidate holds a master’s degree in Computer Science with a specialization in data analytics and is pursuing advanced doctoral research focused on predictive modeling, visual analytics, and AI-driven decision support. Professionally, Aseel has contributed to interdisciplinary research projects in public health intelligence and pandemic surveillance, developing AI/ML models, data-driven forecasting systems, and visualization platforms, while also demonstrating academic leadership through teaching, mentoring, and curriculum support in higher education. The candidate’s professional profile is further strengthened by recognized certifications in data analytics, machine learning, healthcare data science, and research rigor, alongside active engagement in scholarly communities. The scholarly impact is reflected through 22 citations, an h-index of 2, and an i10-index of 1.

Citation Metrics (Google Scholar)

25

20

15

10

5

0

Citations
22

i10index
1

h index
2

Citations

i10 index

h-index

Ms. Xiaohua Li | Machine Learning | Excellence in Research Award

Ms. Xiaohua Li | Machine Learning | Excellence in Research Award

Associate Professor | Shanghai Electric Power University | China

Dr. Li Xiaohua, a distinguished Professor at Sichuan University and leading expert in materials science and structural engineering, is renowned for advancing high-performance composite materials and sustainable structural systems. She holds advanced degrees in materials engineering with specialization in composite behavior and structural performance, complemented by extensive experience in academic leadership, project supervision, and collaborative research initiatives. Her professional portfolio includes directing major institutional projects, mentoring interdisciplinary teams, and contributing to engineering innovations that strengthen the reliability and resilience of modern structures. Dr. Li’s research focuses on composite structures, fire-resistant materials, mechanical behavior, and performance optimization, supported by 297 citations, 34 scholarly documents, and an h-index of 11, reflecting her growing global impact. She has authored influential publications, contributed to high-level research panels, and advanced knowledge dissemination through editorial responsibilities and membership in professional engineering societies. Recognized for excellence in research, innovation, and service, she also holds relevant professional certifications that underscore her commitment to scientific rigor and continued advancement in the engineering sciences.

Profile: Scopus

Featured Publications

Li Xiaohua*, Probabilistic forecasting of coal consumption for power plants under deep peak shaving conditions using Informer with DDPM-based uncertainty modeling. Int. J. Electr. Power Energy Syst., 2025.

Li Xiaohua*, Electromagnetic vibration characteristics of permanent magnet synchronous motors with segmented grain-oriented electrical steel teeth–yoke.

Li Xiaohua, Research on core loss prediction of low-frequency transformer based on Grey Wolf optimisation algorithm optimised Back Propagation neural network. IET Electr. Power Appl., 2025.

 



 

Zhang-Peng Tian | Data-Driven Decision Analysis | Best Researcher Award

Zhang-Peng Tian | Data-Driven Decision Analysis | Best Researcher Award

Associate professor | China University of Mining and Technology | China

Zhang-peng Tian, Ph.D., is an Associate Professor and Head of the Master’s Program in Management Science and Engineering at the School of Economics and Management, China University of Mining and Technology. He earned his Ph.D. and M.E. in Management Science and Engineering from Central South University and a B.E. in Electronic Commerce from Tianjin Chengjian University. Dr. Tian has extensive experience in teaching undergraduate and postgraduate courses, leading national research projects, and contributing as a principal investigator on multiple grants focused on decision-making theory, social network analysis, and data-driven consensus models. His research specializes in data-driven decision analysis, preference learning, and multi-criteria group decision-making, with over 40 publications in top international and Chinese journals, including IEEE Transactions on Fuzzy Systems, Information Fusion, and Applied Soft Computing. He is a council member of national academic associations, serves as a reviewer for leading journals such as Tourism Management, Decision Support Systems, and IEEE Transactions, and regularly participates in prestigious conferences. Dr. Tian has received numerous honors, including recognition for his excellent doctoral dissertation, national and provincial scholarships, and selection into Jiangsu Province’s Double Innovation Doctor program. His academic contributions reflect a commitment to advancing decision science and fostering innovation in information management and engineering applications, making him a distinguished candidate for the Best Researcher Award.

Profile: ORCID

Featured Publications

Tian Zhang-peng*, Xu Fu-xin, Ma Wei-min, Analysis of coalition stability based on graph model under power asymmetry. Syst. Eng. Theory Pract., 2024, 44(7), 2309-2324.

Tian Zhang-peng, Xu Fu-xin, Nie Ru-xin*, Wang Xiao-kang, Wang Jian-qiang, An adaptive consensus model for multi-criteria sorting under linguistic distribution group decision making considering decision-makers' attitudes. Inf. Fusion, 2024, 108, 102406.

Yang Yu, Tian Zhang-peng, Lin Jun*, Strategic outsourcing in reverse logistics: Neutrosophic integrated approach with a hierarchical and interactive quality function deployment. Appl. Soft Comput., 2024, 152, 111256.

Ma Wei-min, Gong Kai-xin*, Tian Zhang-peng, Heterogeneous large-scale group decision making with subgroup leaders: An application to the green supplier selection. J. Oper. Res. Soc., 2023, 74(6): 1570-1586.

Tian Zhang-peng, Liang He-ming, Nie Ru-xin*, Wang Xiao-kang, Wang Jian-qiang, Data-driven multi-criteria decision support method for electric vehicle selection. Comput. Ind. Eng., 2023, 177: 109061.

Tian Zhang-peng, Xu Fu-xin, Nie Ru-xin*, Wang Xiao-kang, Wang Jian-qiang, Linguistic single-valued neutrosophic multi-criteria group decision making based on personalized individual semantics and consensus. Informatica, 2023, 34(2): 387-413.

Tian Zhang-peng, Liang He-ming, Nie Ru-xin*, Wang Jian-qiang, An integrated multi-granular distributed linguistic decision support framework for low-carbon tourism attraction evaluation. Curr. Issues Tourism, 2023, 26(6): 977-1002.

Nie Ru-xin, Chin Kwai Sang, Tian Zhang-peng*, Wang Jian-qiang, Zhang Hong-yu, Exploring dynamic effects on classifying service quality attributes under the impacts of COVID-19 with evidence from online reviews. Int. J. Contemp. Hosp. Manage., 2023, 35(1): 159-185.

Wang Xiao-kang, Hou Wen-hui, Zhang Hong-yu, Wang Jian-qiang, Goh Mark, Tian Zhang-peng, Shen Kai-wen, KDE-OCSVM model using Kullback-Leibler divergence to detect anomalies in medical claims. Expert Syst. Appl., 2022, 200: 117056.