Dr. Cangbi Ding | Grid Integration of Renewable Energy | Best Academic Researcher Award

Doctoral candidate at Nanjing University of Aeronautics and Astronautics, China

Cangbi Ding is a dedicated doctoral candidate at the Nanjing University of Aeronautics and Astronautics, specializing in the field of automation and power systems. With a solid academic foundation and a growing portfolio of impactful research, he has emerged as a promising scholar in the areas of high-voltage direct current (HVDC) systems, renewable energy integration, and power system stability control. His work is marked by innovation, technical rigor, and contributions that bridge both academic inquiry and industrial practice, positioning him as a strong candidate for recognition in international research awards.

Professional Profile

Scopus | Google Scholar

Education

Cangbi Ding began his academic journey by earning a Bachelor of Science degree in automation from Southeast University Chengxian College. He advanced his studies by pursuing a Master of Science degree at Nanjing University of Posts and Telecommunications, where he graduated with a focus on electrical engineering applications and automation technologies. Building upon this strong foundation, he is currently pursuing a Doctor of Philosophy degree in the College of Automation Engineering at the Nanjing University of Aeronautics and Astronautics. His doctoral research emphasizes planning and control methodologies for HVDC systems, a field that plays a crucial role in enhancing the efficiency and resilience of modern power grids. This progression highlights his commitment to advancing knowledge in the field of power and energy systems.

Experience

Throughout his academic career, Cangbi Ding has accumulated extensive experience through his involvement in numerous national and industrial research projects. He has actively participated in four projects funded by the National Natural Science Foundation of China, in addition to contributing to thirteen technological and consulting initiatives supported by the State Grid Corporation of China and the China Southern Power Grid Company. These experiences have equipped him with practical insights into large-scale energy systems while also refining his ability to bridge theory with real-world application. His consultancy roles in the energy sector reflect his capacity to provide innovative solutions for power system stability, grid modernization, and renewable energy integration. This blend of academic research and industrial collaboration illustrates his versatility and practical relevance as a researcher.

Research Focus

Cangbi Ding’s research centers on the integration of renewable energy into existing power grids, with particular emphasis on the planning and control of HVDC systems. His investigations into reactive power compensation after renewable energy integration address critical challenges in maintaining voltage stability and economic efficiency in power networks. By introducing both static and dynamic voltage stability indicators, he has proposed staged compensation methods that improve both system safety and cost-effectiveness. Another significant contribution is his work on HVDC system evolution, where he developed evaluation methods to classify systems and analyze their operational characteristics. His research not only advances academic understanding but also provides actionable methodologies for improving energy transmission infrastructure in the context of growing renewable energy adoption.

Awards & Honors

While still in the early stages of his academic career, Cangbi Ding has built a commendable record of achievements that reflect his innovation and technical acumen. His involvement in nationally significant projects, combined with his success in patenting technological innovations, underscores his contributions to the field. He has secured twelve granted invention patents and one utility model patent, an extraordinary accomplishment for a young researcher. These recognitions illustrate his capacity to transform theoretical advancements into practical innovations, positioning him as a standout contributor to the future of electrical engineering and power systems research.

Publication Top Notes

Title: Adaptive frequency control strategy for PMSG-based wind power plant considering releasable reserve power
Authors: J Dai, C Ding, X Zhou, Y Tang
Journal: Sustainability 14 (3), 1247

Title: Deep reinforcement learning-based voltage control method for distribution network with high penetration of renewable energy
Authors: S Liu, C Ding, Y Wang, Z Zhang, M Chu, M Wang
Journal: 2021 IEEE Sustainable Power and Energy Conference (iSPEC), 287-291

Title: Data-driven prediction of wind turbine blade icing
Authors: L Liu, D Guan, Y Wang, C Ding, M Wang, M Chu
Journal: 2021 China Automation Congress (CAC), 5211-5216

Title: Robust optimization method of power system multi resource reserve allocation considering wind power frequency regulation potential
Authors: J Dai, C Ding, C Yan, Y Tang, X Zhou, F Xue
Journal: International Journal of Electrical Power & Energy Systems 155, 109599

Title: An adaptive ufls scheme incorporating the impact of load response
Authors: W Zhu, C Ding, J Wu
Journal: 2021 IEEE Sustainable Power and Energy Conference (iSPEC), 2617-2622

Title: An active power coordination control strategy for AC/DC transmission systems to mitigate subsequent commutation failures in HVDC systems
Authors: X Zhou, C Ding, J Dai, Z Li, Y Hu, Z Qie, F Xue
Journal: Electronics 10 (23), 3044

Title: Research on the multi-timescale optimal voltage control method for distribution network based on a DQN-DDPG algorithm
Authors: M Ma, W Du, L Wang, C Ding, S Liu
Journal: Frontiers in Energy Research 10, 1097319

Title: Optimal Configuration Method for Multi-Type Reactive Power Compensation Devices in Regional Power Grid with High Proportion of Wind Power
Authors: Y Wang, J Dang, C Ding, C Zheng, Y Tang
Journal: Energy Engineering 121 (11)

Title: Research on the Optimal Configuration of Regional Integrated Energy System Based on Production Simulation
Authors: T Shi, RM Huang, CB Ding
Journal: Processes 8 (8), 892

Title: Research on The Fault Diagnosis Method of Oil-Immersed Transformers Based on The Improved DBSCAN Algorithm
Authors: W Cui, M Chu, C Ding, Y Wang, M Wang, L Liu
Journal: 2021 China Automation Congress (CAC), 5171-5176

Title: Voltage Interaction Evaluation in Embedded DC Transmission System
Authors: C Ding, C Zheng, Y Tang, C Zhang, X Han
Journal: Journal of Modern Power Systems and Clean Energy

Title: Cooperative Operation Control Strategy of Multi-Type Reactive Power Compensation Devices in Regional Power Grid with High Proportion of Wind Power
Authors: J Xu, Y Shen, K Li, X Wang, C Zheng, C Ding
Journal: 2024 6th International Conference on Electrical Engineering and Control

Title: Key Parameters Optimization Method of Wind Turbine Reactive Power Support Considering Power Angle Stability and Short-Circuit Current
Authors: J Xu, Y Shen, K Li, X Wang, C Zheng, C Ding
Journal: 2024 IEEE PES 16th Asia-Pacific Power and Energy Engineering Conference

Title: Coordinated CFPREV Control for Cascading Commutation Failure Mitigation in Multi-infeed HVDC Systems
Authors: J Xu, K Li, Y Shen, X Wang, C Zheng, C Ding
Journal: 2023 2nd Asia Power and Electrical Technology Conference (APET), 131-138

Title: Cooperative Reactive Power Configuration of Hybrid HVDC Transmission System for Offshore Wind Farm Clusters
Authors: Y Lin, Y Tang, W Wu, C Ding, C Zheng, Y Tang
Journal: 2023 IEEE 7th Conference on Energy Internet and Energy System Integration

Title: Research on Equivalent Modeling of Wind Farm Based on Error Correction Method
Authors: J Dai, C Ding, L Liu
Journal: 2022 International Conference on Cyber-Physical Social Intelligence (ICCSI)

Title: Optimal Scheduling Analysis of Wind Farm Group Considering False Data Injection Attack
Authors: J Wu, C Ding, W Zhu
Journal: 2022 34th Chinese Control and Decision Conference (CCDC), 5433-5439

Title: Research on HVDC Subsequent Commutation Failure Suppression Strategy Considering Energy Storage Phase Modulation Operation
Authors: C Ding, W Zhu, S Liu, W Cui, Z Zhang, J Wu
Journal: 2021 IEEE Sustainable Power and Energy Conference (iSPEC), 1177-1182

Conclusion

Cangbi Ding’s academic journey and research accomplishments exemplify a blend of scholarly rigor, innovation, and practical relevance. With a foundation of strong academic training, significant project involvement, and a growing portfolio of publications and patents, he has already established himself as a promising researcher in electrical engineering. His focus on HVDC systems and renewable energy integration directly addresses pressing global challenges in energy sustainability and grid modernization. By translating complex theoretical concepts into practical solutions, he demonstrates the capacity to shape the future of power systems. His achievements make him an outstanding nominee for recognition in research excellence awards, reflecting his potential to continue contributing groundbreaking work to the advancement of electrical engineering.

Dr. Cangbi Ding | Grid Integration of Renewable Energy | Best Academic Researcher Award

You May Also Like