Assoc. Prof. Dr. Huibin Jia | Smart Grids and Microgrids | Research Excellence Award

Assoc. Prof. Dr. Huibin Jia | Smart Grids and Microgrids | Research Excellence Award

Associate Professor | North China Electric Power University | China

Huibin Jia, an Associate Professor in the Department of Electronic and Communication Engineering at North China Electric Power University, is a specialist in smart grid communication and intelligent power system technologies whose academic background includes advanced degrees in electronic engineering with a focus on communication systems and data‐driven power applications. His professional experience spans leading roles in research and industry-linked projects involving fault traveling wave location, cyber-physical system security, power grid risk prevention, and simulation analysis under extreme operating conditions, complemented by active participation in national and provincial research initiatives. He has contributed extensively to the advancement of smart grid big data analytics, Internet of Things integration, artificial intelligence applications in power systems, and high-precision fault location techniques, resulting in more than fifty publications, a technical book, and numerous patented innovations. His scholarly contributions are further strengthened by professional membership in IEEE, collaborative engagements across funded research programs, and recognized expertise that supports both academic progress and practical advancements in power system reliability. 652 Citations, 75 Documents, 13 h-index, View h-index button is disabled in preview mode.

Profiles: Scopus | ORCID

Featured Publications

Huibin Jia, Smart grid communication enhancement through integrated IoT architectures and AI-driven data analytics. Int. J. Electr. Power Syst., Accepted.


Huibin Jia, Fault traveling wave location and cyber-physical security protection models for intelligent power grids. Electr. Power Syst. Res., In Press.


Huibin Jia, Big data-assisted fault diagnosis and operational reliability optimization in modern smart grid environments. J. Mod. Power Eng., Publication Ongoing.**

Prof. Qie Sun | Power System Stability & Control | Research Excellence Award

Prof. Qie Sun | Power System Stability & Control | Research Excellence Award

Director | Shandong University | China

Prof. Qie Sun, Professor and doctoral supervisor at Shandong University and Deputy Dean of the Institute for Advanced Technology, is a leading expert in sustainable energy systems, thermal science, and integrated energy system optimization. He holds a doctorate in Industrial Ecology from the Royal Institute of Technology and bachelor’s and master’s degrees in management from Ocean University of China. His professional experience encompasses academic leadership roles, major interdisciplinary collaborations, and the management of high-impact projects in multi-energy systems, CO₂ capture and utilization, thermal management technologies, and energy storage solutions. He has led and contributed to numerous national and provincial research initiatives and played a key role in the thermal control research of the Alpha Magnetic Spectrometer. His research focuses on integrated energy systems, system flexibility under uncertainty, multi-energy coupling modeling, thermal management for electronics and wearable devices, urban energy systems, and industrial ecology, supported by extensive scholarly output that includes over 140 documents, 5,302 citations, and an h-index of 33. Prof. Sun has received multiple honors, including global top scientist recognitions, best paper awards, outstanding reviewer awards, and teaching excellence distinctions. He serves as Assistant Editor of Advances in Applied Energy, Associate Editor for several prominent journals, reviewer for numerous high-impact publications, and an active member of professional bodies such as IEEE and the Chinese Society of Engineering Thermophysics. Through his editorial leadership, scientific committee roles, and contributions to international conferences, Prof. Sun continues to advance innovation and global scholarship in sustainable energy research.

Profile: Scopus

Featured Publications

Sun, Q.*, The flexibility of a molten salt thermal energy storage (TES)-integrated coal-fired power plant. Applied Energy, 2025.

Sun, Q.*, Dynamically tunable silica hydrogel windows enabled by hydration state control for enhanced building energy efficiency. Applied Thermal Engineering, 2025.

Sun, Q.*, Impact of dust composition on parabolic trough concentrator performance across diverse regions. Solar Energy, 2025.

Sun, Q.*, The review of key furnaces in CaC₂ smelting process under the background of carbon neutrality. Review, 2025.

Sun, Q.*, A thin and lightweight miniature loop heat pipe for cooling mobile electronic devices. Device, 2025.

Prof. Xubin Liu | Smart Grids and Microgrids | Editorial Board Member

Prof. Xubin Liu | Smart Grids and Microgrids | Editorial Board Member

Professor | Central South University | China

Dr. Xubin Liu is a postdoctoral researcher in Electrical Engineering at the School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, specializing in power systems, renewable energy integration, and microgrid control. He holds a Ph.D. in Electrical Engineering from Hunan University with joint doctoral training at Tsinghua University, preceded by a bachelor’s degree in Electrical Engineering from Northwest University for Nationalities. His professional experience includes leading and contributing to advanced research projects on intelligent distribution networks, multi-energy systems, frequency–voltage coordination, fault current management, energy storage control, and real-time simulation platforms for active distribution networks. Dr. Liu’s research focuses on integrated energy systems, renewable energy dispatch, microgrid stability, advanced control strategies, and data-driven forecasting, reflected in numerous publications in high-impact IEEE and international journals. He has served as a reviewer for leading journals and as a member of editorial boards, contributing to the scientific community through peer review and academic engagement. His achievements have been recognized through multiple national scholarships, provincial honors, competition awards, and distinctions for academic excellence. He has also participated in major national and international collaborative projects involving intelligent grid systems, clean energy integration, and enterprise-level energy internet technologies. Dr. Liu continues to advance the fields of smart grids, energy optimization, and power electronic control through innovative research, project leadership, and active participation in professional societies.

Profile: ORCID

Featured Publications

Xubin Liu*, Frequency-Voltage synergy support method based on grid strength for VSC-MTDC integrated distributed offshore wind farms. IEEE Trans. Power Syst., 2025, 40(4), 3543–3562.

Xubin Liu*, A coordinated voltage-frequency support method for VSC-MTDC integrated offshore wind farms system. IEEE Trans. Power Syst., 2024, 39(1), 1485–1502.

Xubin Liu*, Fault current unified calculation method for whole-process fault ride-through of DFIG-based wind farms. IEEE Trans. Smart Grid, 2024, 15(1), 485–503.

Xubin Liu*, Active fault current limitation for VSC-MTDC integrated offshore wind farms participating in frequency regulation. IEEE Trans. Sustain. Energy, 2024, 15(2), 773–788.

Xubin Liu*, Fault current multi-stages calculation method for DFIG-based wind farms with whole fault-process attributes under asymmetrical grid-fault conditions. IEEE Trans. Sustain. Energy, 2024, 15(4), 2361–2379.

Assoc. Prof. Dr. Ehsan Akbari | Power Electronics Converters | Best Researcher Award

Assoc. Prof. Dr. Ehsan Akbari | Power Electronics Converters | Best Researcher Award

Associate Professor | Mazandaran University of Science and Technology | Iran

Dr. Ehsan Akbari is an Associate Professor in the Department of Electrical Engineering at the Mazandaran University of Science and Technology, renowned for his expertise in electrical power engineering, power electronics, and modern energy systems. He holds comprehensive academic qualifications spanning bachelor’s, master’s, and doctoral degrees in Electrical Power Engineering with focused specialization in power quality enhancement, converter control, smart grids, and renewable energy integration. His professional career includes extensive teaching, research leadership, and contributions to major projects involving flexible AC transmission systems, multilevel converters, grid-connected converter control, micro-grid stability, reactive power management, and harmonics mitigation using advanced hybrid filtering techniques. A highly productive scholar, he has authored numerous books along with hundreds of peer-reviewed publications and has secured multiple patents that reflect his commitment to advancing power system reliability and intelligent energy technologies. His academic service includes organizing and contributing to program committees of various scientific conferences, mentoring emerging researchers, and participating in collaborative initiatives that translate theoretical advancements into practical engineering solutions. Dr. Akbari has earned several scientific and technological achievement awards, complemented by professional memberships, editorial engagements, and recognized contributions to the global power engineering community. Citations 1,206 by 962 documents, 58 documents, h-index 20.

Profile: Scopus

Featured Publications

Akbari, E.*, Stationary-frame power regulation for controlling grid-connected three-phase modular multilevel converter with low harmonic under unbalanced voltage. Scientific Reports, 2025.

Akbari, E.*, Flexibility regulation-based economic energy scheduling in multi-microgrids with renewable/non-renewable resource and stationary storage systems considering sustainable computing by hybrid metaheuristic algorithm. Sustainable Computing: Informatics and Systems, 2025.

Akbari, E.*, Capabilities of battery and compressed air storage in the economic energy scheduling and flexibility regulation of multi-microgrids including non-renewable/renewable units. Scientific Reports, 2025.

Akbari, E.*, An optimized ANFIS framework for online voltage stability margin estimation in power systems using the novel Solifugae-inspired optimization algorithm and partial least squares-based dimensionality reduction. Measurement, 2025.